Tuesday, December 21, 2021

Estimating the Effect of Physical Infrastructure on Economic Growth

I have a new working paper coauthored with Govinda Timilsina of the World Bank and my PhD student Debasish Das. It is a panel data study of the effect of various forms of infrastructure on the level of GDP. 

Compared to existing studies, we use more recent data, include new types of infrastructure such as mobile phones, and provide separate estimates for developing and developed countries. We find larger effects than most previous studies. We also find that infrastructure has a larger effect in more recent years (1992-2017) than in earlier years (1970-1991), and the effects of infrastructure are higher in developing economies than in industrialized economies. The long-run effects seem to be much larger than the initial impact. We also tried to estimate the effect of infrastructure on the rate of economic growth. Controlling for the initial level of GDP per worker we found a null result. So, we can't say that having more infrastructure means a more rapid rate of economic growth.

Getting good quality data that is comparable across countries is really a problem in this area of research. Many types of infrastructure only have data available for a few years. The ones that have more panel-like data often suffer from differences in definition across countries – such as what is a road or a motorway – or unexplained jumps in individual countries. So, our results are subject to a lot of measurement error.

Our main analysis uses data on five types of infrastructure – roads, railways, electric generation capacity, fixed line telephones, and mobile telephones*:

Following some previous research, we aggregate the individual types of infrastructure using principal component analysis. We use two principal components. One factor seems to be related to transport infrastructure and the other to electricity and telecommunications. Still, we can recover estimates of the effect of each individual type of infrastructure.

Also following some previous research, we use the Pooled Mean Group estimator to estimate a dynamic panel regression model. This allows us to test for the weak exogeneity of the explanatory variables, allowing us to give the results a somewhat causal interpretation.

The table shows the percentage change in GDP per worker for a 1% change in each infrastructure type. Getting standard errors for these estimates would be rather tricky.** Interestingly, the PMG estimates are mostly much larger than the static fixed effects estimates. Static fixed effects can be expected to converge to a short-run estimate of the effects while PMG should be a better estimate of long-run effects. Fixed effects also tends to inflate the effects of measurement error

Maybe the most innovative thing in the paper is that we plot the impulse response functions of GDP with respect to a 1% increase in each of the two main types of infrastructure:

PC1 is electricity and communications and PC2 transport infrastructure.*** Long-run effects of infrastructure are much larger than the short-run effects. In the short run, transport infrastructure even has a negative impact.

* Note that the graphs show the country means of these variables, while we actually use the deviations from those means over time in each country

** We only estimate the GDP-infrastructure relationship, but I think we would need time series models for each of the explanatory variables in order to sample from those models' residuals in a bootstrapping procedure. Bootstrapping is needed because we first carry out the principal components analysis and then estimate the PMG model in a second stage. These elasticities are combinations of the parameters from those two models.

*** We could get a confidence interval for these impulse response functions if we assume that the explanatory variables in the PMG model are deterministic as this analysis assumes...


No comments:

Post a Comment